

Rev.0TF3.30_20230928

10G XFP BX(BR)-U Transceiver

Hot Pluggable, Bidi LC, Tx1270nm DFB / Rx1330nm, SMF 40KM, DDM

Part Number: FXFP-H8-C27-40D

Overview

FXFP-H8-C27-40D Small Form Factor Pluggable XFP transceivers are compliant with the current XFP Multi-Source Agreement (MSA) Specification. The high performance uncooled 1270nm DFB transmitter and high sensitivity PIN receiver provide superior performance for 10GBASE Ethernet applications up to 40km optical links.

Applications

- 10GBASE-BX(BR) Ethernet @10.3125G
- Fiber Channel 1200-SM-LL-L 10GFC @10.51875G
- SONET OC-192 & SDH STM-64 @9.953G
- CPRI Option #8 @10.1376G
- OTN OTU2 @10.7G, OTU2e @11.09G, OTU2f @11.32G

Features

- Compatible with IEEE802.3ae 10GBASE-BX(BR)
- Compliant with CPRI Option 8
- Compliant with INF-8077i XFP MSA
- Support 9.953Gb/s to 11.32Gb/s Multi-Rate
- Built-in CDR on both Transmitter and Receiver
- Hot Pluggable XFP footprint
- 1270nm DFB laser transmitter
- Simplex LC connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8472
- Single +3.3V power supply
- Link distance 40km over SM fiber
- RoHS Compliant

Laser Safety

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Rev.0TF3.30_20230928

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	Tst	-40	+85	°C
Storage Relative Humidity	RH	5	95	%
Supply Voltage	Vcc3	-0.5	+4.0	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temp. (FXFP-H8-C27-40D)	Тор	0	-	+70	°C
Case Operating Temp. (FXFP-H8-C27-40Di)	Тор	-40	-	+85	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Supply Current (FXFP-H8-C27-40D)	lcc			480	mA
Supply Current (FXFP-H8-C27-40Di)	lcc			560	mA
Power Consumption (FXFP-H8-C27-40D)	Р			1.7	W
Power Consumption (FXFP-H8-C27-40Di)	Р			2.0	W

Transmitter Electro-optical Characteristics

V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C) (FXFP-H8-C27-40D); T_{OP} = -40 °C to 85 °C(FXFP-H8-C27-40Di)

			•		
Symbol	Min.	Тур.	Max.	Unit	Note
DR	9.953	10.3125	11.32	Gb/s	
Po	+0.5		+5	dBm	1
λc	1260	1270	1280	nm	
Δλ			1	nm	
SMSR	30			dB	
ER	3.5			dB	
	IEEE802.3ae				
RIN			-128	dB/Hz	
Vin	180		950	mV	
TDISV∟	GND		0.8	V	
TDISV H	2.0		Vcc	V	
TFLTV∟	GND		0.8	V	
TFLTVH	2.0		Vcc	V	
	DR Po λc Δλ SMSR ER VIN TDISVL TDISVH TFLTVL	DR 9.953 Po +0.5 λc 1260 Δλ - SMSR 30 ER 3.5 RIN - VIN 180 TDISVL GND TDISVH 2.0 TFLTVL GND	DR 9.953 10.3125 Po +0.5 1260 1270 λc 1260 1270 1270 Δλ 30 10.3125 1270 SMSR 30 1270 1270 SMSR 30 1270 1270 RIN 3.5 1260 1270 VIN 180 1260 1270 TDISVL GND 1270 1270 TDISVH 2.0 1270 1270	DR 9.953 10.3125 11.32 Po +0.5 +5 λc 1260 1270 1280 Δλ 1 1 1 SMSR 30 -1 1 SMSR 30 -128 -128 ER 3.5 -128 -128 NIN 180 950 -128 VIN 180 0.8 0.8 TDISVL GND 0.8 0.8 TDISVH 2.0 Vcc 0.8	DR 9.953 10.3125 11.32 Gb/s Po +0.5 +5 dBm λc 1260 1270 1280 nm Δλ 1260 1270 1280 nm Δλ 1 nm SMSR 30 1 nm SMSR 30 IEEE IEEE80 dB dB ER 3.5 IEEE82.3ae dB/Hz NIN 180 950 mV TDISVL GND 0.8 V TDISVH 2.0 Vcc V TFLTVL GND 0.8 V

Note1: The optical power is launched into a 9/125µm single mode fiber.

2

Sales@Ficer.com

Link Fiber to Future

FICER Technology Co., Ltd. 明虹科技股份有限公司

2F, No.138, Daye Rd., Beitou Dist., Taipei City 11268, Taiwan www.Ficer.com

Receiver Electro-optical Characteristics

Rev.0TF3.30_20230928

V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C(FXFP-H8-C27-40D); T_{OP} = -40 °C to 85 °C(FXFP-H8-C27-40Di)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate	DR	9.953	10.3125	11.32	Gb/s	
Receiver Sensitivity	SEN			-15.5	dBm	1
Maximum Receive Power	Prx_max	+0.5			dBm	1
Optical Center Wavelength	λc	1320	1330	1340	nm	
LOS De-Assert	LOSD			-16.5	dBm	
LOS Assert	LOSA	-26			dBm	
LOS Hysteresis	LOSHY	0.5		4	dB	
Differential Data Output Swing	Vout	400		800	mV	
Receiver LOS Signal Output Voltage-Low	LOSVL	GND		0.8	V	
Receiver LOS Signal Output Voltage-High	LOSVH	2.0		Vcc	V	

Note1: Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps BER<10⁻¹².

Pin Assignment

Rev.0TF3.30_20230928

4

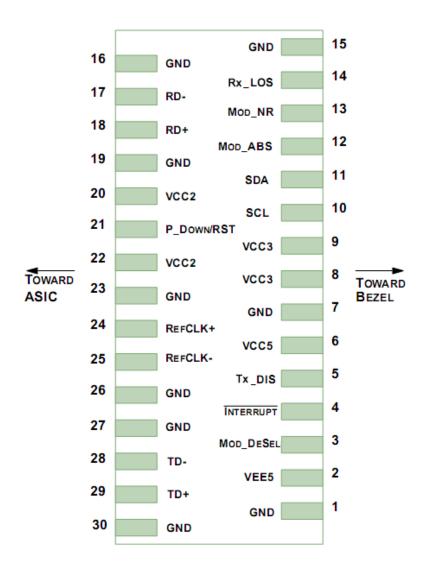


Diagram of Host Board Connector Block Pin

Rev.0TF3.30_20230928

Pin Description

Pin	Name	Function / Description
1	GND	Module Ground
2	VEE5	Optional -5.2V Power Supply (Not required)
3	MOD-DESEL	Module De-select; When held low allows the module to, respond to 2- wire serial interface commands
4	INTERPUPT	Interrupt (bar); Indicates presence of an important condition which can be read over the serial 2-wire interface
5	Tx_DIS	Transmitter Disable; Transmitter laser source turned off
6	VCC5	+5V Power Supply (Not required)
7	GND	Module Ground
8	VCC3	+3.3V Power Supply
9	VCC3	+3.3V Power Supply
10	SCL	Serial 2-wire interface clock
11	SDA	Serial 2-wire interface data line
12	MOD_ABS	Module Absent; Indicates module is not present. Grounded in the module
13	Mod_NR	Module Not Ready; Indicating Module Operational Fault
14	Rx_LOS	Receiver Loss of Signal indicator
15	GND	Module Ground
16	GND	Module Ground
17	RD-	Receiver inverted data output
18	RD+	Receiver non-inverted data output
19	GND	Module Ground
20	VCC2	+1.8V Power Supply (Not required)
01	P Down/RST	Power Down; When high, places the module in the low power stand-by mode and on the falling edge of P_Down initiates a module reset
21 P_Down/RST		Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle.
22	VCC2	+1.8V Power Supply (Not required)
23	GND	Module Ground
24	REFCLK+	Reference Clock non-inverted input, AC coupled on the host board (Not required)
25	REFCLK-	Reference Clock inverted input, AC coupled on the host board (Not required)

5

Sales@Ficer.com

Link Fiber to Future

Rev.0TF3.30_20230928

26	GND	Module Ground			
27	GND	Module Ground			
28	TD-	Fransmitter inverted data input			
29	TD+	Transmitter non-inverted data input			
30	GND	Module Ground			

Note1: Module circuit ground is isolated from module chassis ground within the module.

Note2: Open collector; should be pulled up with 4.7k – 10k ohms on host board to a voltage between 3.15Vand 3.6V.

Note3: A Reference Clock input is not required.

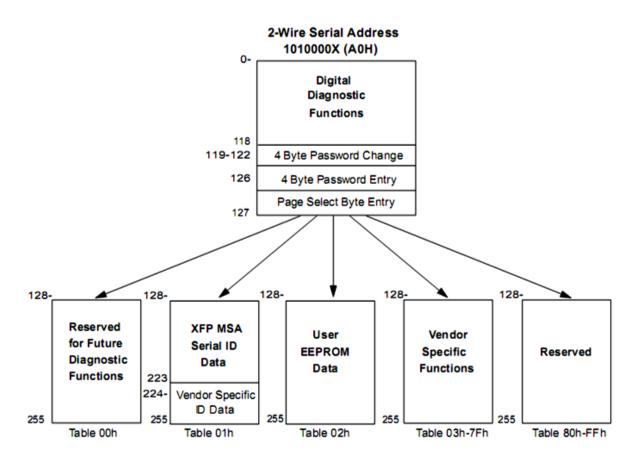
Digital Diagnostic Functions

As defined by the XFP MSA, Ficer's XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

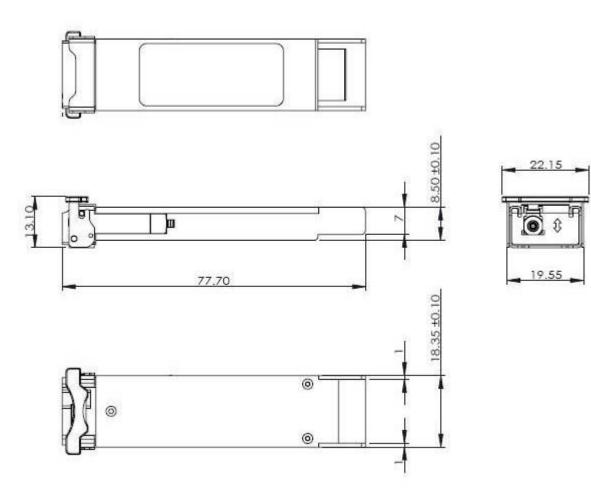
The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.


For more detailed information including memory map definitions, please see the XFP MSA Specification.

Digital Diagnostic Memory Map

Rev.0TF3.30_20230928

7


Digital Diagnostic Monitoring Characteristics

Parameter	Accuracy	Unit	Note
Temperature	±3	°C	Internal Calibration
Supply Voltage	±0.1	V	Internal Calibration
Tx Bias Current	±5	mA	Internal Calibration
Tx Output Power	±3	dB	Internal Calibration
Rx Received Optical Power	±3	dB	Internal Calibration

Mechanical Dimensions

Rev.0TF3.30_20230928

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

Part No.	Тх	Rx	Link	DDM	Temp.
FXFP-H8-C27-40D	4070	1220	401	Maa	0~70°C
FXFP-H8-C27-40Di	1270nm	1330nm	40km	Yes	-40~85°C

Note1: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.

8